
Automating the Testing of OpenFlow Applications

Marco Canini∗, Dejan Kostić∗, Jennifer Rexford†, Daniele Venzano∗

∗EPFL, {marco.canini,dejan.kostic,daniele.venzano}@epfl.ch
†Princeton University, jrex@cs.princeton.edu

Abstract—Software-defined networking, and the emergence of
OpenFlow-capable switches, enables a wide range of new network
functionality. However, enhanced programmability inevitably
leads to more software faults (or bugs). We believe that tools for
testing OpenFlow programs are critical to the success of the new
technology. However, the way OpenFlow applications interact
with the data plane raises several challenges. First, the space of
possible inputs (e.g., packet headers and inter-packet timings) is
huge. Second, the centralized controller has a indirect view of
the traffic and experiences unavoidable delays in installing rules
in the switches. Third, external factors like user behavior (e.g.,
mobility) and higher-layer protocols (e.g., the TCP state machine)
affect the correctness of OpenFlow programs.

In this work-in-progress paper, we extend techniques for
symbolic execution to generate inputs that systematically explore
the space of system executions. First, we analyze controller ap-
plications to identify equivalence classes of packets that exercise
different parts of the code. Second, we propose several network
models with increasing precision, ranging from simple traffic
models to live testing on the target network. Initial experiences
with our prototype, which symbolically executes OpenFlow ap-
plications written in Python, suggest that our techniques can help
programmers identify bugs in their OpenFlow programs.

I. INTRODUCTION

After more than a decade of arguing for programmable

networks, this vision is finally materializing. In particular, the

OpenFlow protocol allows a logically-centralized controller to

programmatically install packet-handling rules in the under-

lying switches [1]. Controller applications can dynamically

install new rules, read traffic statistics for existing rules, learn

about switch and link failures, and handle data packets on

behalf of the switches. Several commercial switch vendors

support OpenFlow, a number of campus and backbone de-

ployments are underway, and a growing collection of con-

troller applications implement new network functionality [2]–

[7]. However, along with easier extensibility, programmable

networks increase the potential for software faults (or bugs).

Conventional networks are largely driven by configurations

that can be statically checked. Even though today’s routers

and switches run complex software, the code is written, tested,

and debugged by the equipment vendors, and the functionality

is (somewhat) constrained by the protocol standardization

process. Still, even carefully-debugged, closed-source router

software can have bugs that trigger Internet-wide failures [8]–

[10]. In contrast, OpenFlow networks are driven by dynamic

programs, written by network operators and third-party de-

velopers. As more people start programming the network, the

problems with buggy software will only get worse.

Our goal is to help these programmers produce reliable new

OpenFlow applications. Designing domain-specific program-

ming languages is one approach to prevent common coding

mistakes. However, the adoption of new languages is difficult

in practice. Not surprisingly, existing OpenFlow applications

are written in well-known, general-purpose languages, like

Python and C++. Rather than design a new language, we are

creating tools and techniques for testing OpenFlow applica-

tions as extensively as possible, to detect and eliminate bugs.

In particular, we identify ways to explore the large space of

possible system executions, using carefully crafted inputs.

Two techniques from the verification community—model

checking [11], [12] and symbolic execution [13]—have proven

quite effective in detecting bugs in distributed systems soft-

ware. However, we cannot simply apply these techniques “out

of the box,” because programming OpenFlow networks raises

several additional challenges, such as:

Much larger space of inputs: An OpenFlow application is

data-plane driven, i.e., the program must react to a very large

space of possible packet headers and inter-packet timings.

Thus, the problem at hand is much harder than that of testing

control-plane software (e.g., BGP implementations).

Distributed collection of switches: While OpenFlow pro-

grams run on a centralized controller, the system is still dis-

tributed. The packets seen at the controller can be a subset or

superset of those expected by the programmer. The abstraction

of a central control plane hides the network latencies and can

give rise to race conditions, where rules are installed while

packets in flight are processed based on previous settings.

End-host devices, protocols, and applications: The traffic

and events seen in an OpenFlow network depends on outside

factors, such as user behavior (e.g., device mobility), transport

protocols (e.g., the TCP state machine), and end-host applica-

tions (e.g., Web servers). Hence, testing cannot focus on the

network topology and controller application in isolation.

To make testing tractable, we identify: (i) distinct packet

header patterns and (ii) packet timings, orderings, and other

network events that can exercise different paths through the

code. To accomplish the first goal, we perform dynamic analy-

sis of the OpenFlow application code to determine equivalence

classes of packets that exercise different parts of the code.

For the second task, we automatically infer and use network

models of increasing coverage and precision to inject the

relevant streams of packets into the application code. Each

execution of the application is checked for correctness by

verifying the universally applicable invariants (e.g., avoiding

black holes and loops), as well as those added by developers.

The main novelty of our work lies in automatically deter-

mining the complex network model that drives application

behavior. Existing model checking and symbolic-execution

tools for distributed systems require this model to be manually

specified. Moreover, we go one step further by checking the



2

network itself, in contrast to existing approaches that take basic

network connectivity for granted.

In the remainder of this paper, we present a brief overview

of OpenFlow in Section II and a set of motivating OpenFlow

examples of software bugs in Section III. We then describe

the challenges of testing OpenFlow programs and we address

these challenges in Section IV. Section V presents our initial

implementation of a symbolic-execution engine capable of

running applications written in Python for the popular NOX

OpenFlow controller [14]. Section VI discusses related work,

and Section VII concludes the paper with a discussion of future

research directions.

II. OPENFLOW BACKGROUND

The OpenFlow protocol allows programs running on a

logically-centralized controller to coordinate a distributed col-

lection of switches.

OpenFlow switches: An OpenFlow switch has a flow table

that stores an ordered list of rules for processing packets. Each

rule consists of a pattern (matching on packet header fields),

actions (such as forwarding, dropping, flooding, or modifying

the packets, or sending them to the controller), a priority (to

distinguish between rules with overlapping patterns), and a

timeout (indicating whether/when the rule expires). A pattern

can require an “exact match” on all relevant header fields (i.e.,

a microflow rule), or have “don’t care” bits in some fields

(i.e., a wildcard rule). For each rule, the switch maintains

traffic counters that measure the number of bytes and packets

processed so far. When a packet arrives, a switch selects the

highest-priority matching rule, updates the traffic counters,

and performs the specified action(s). Switches also generate

events, such as a “join” event upon joining the network, or

“port change” events when links go up or down.

Centralized controller: An OpenFlow network has a cen-

tralized programming model, where one (or a few) software

controllers manages the underlying switches. The controller

(un)installs rules in the switches, reads traffic statistics col-

lected by the switches, and responds to network events. A

controller application defines a handler for each event (e.g.,

packet arrival, rule timeout, and switch join), which may

install new rules or issue new requests for traffic statistics.

A common idiom for controller applications is to respond to

a packet arrival by installing a rule for handling subsequent

packets directly in the data plane. Sending packets to the

controller introduces overhead and delay, so most applications

try to minimize the fraction of traffic that must go to the

controller. Most OpenFlow applications are written on the

NOX controller platform [14], which offers OpenFlow API

for applications written in Python or C++. These controller

applications are general-purpose programs that can perform

arbitrary computation and maintain arbitrary state.

III. EXAMPLE BUGS IN CONTROLLER PROGRAMS

Testing and debugging controller programs is challenging,

since small differences in packet header fields or packet timing

can affect the state of the network and “tickle” subtle bugs.

Multiple packets of a flow reaching the controller: A

common idiom in programming OpenFlow networks is to

direct a packet to the controller, and then install a rule for

the switches to handle the remaining packets of a flow in the

data plane. Yet, a race condition can easily arise if additional

packets arrive while the controller is in the middle of installing

the rule. These packets arrive at the controller as well. A

program that implicitly expects to see just one packet may

behave incorrectly when multiple packets arrive. For example,

imagine a program that intends to directs all packets in a flow

to the same randomly-selected server. The arrival of a second

packet may trigger the application to install a second rule that

directs packets to a different server replica. The program would

behave correctly in the common case where the subsequent

packets enter the network only after the rule is installed, but

break if a burst of packets arrives at the controller.

No atomic update across multiple switches: Many ap-

plications need to install rules at multiple switches (e.g., to

direct the packets over a particular path through the network).

These rules are not installed atomically, so some switches may

start applying new rules before other switches have installed

their rules. This can lead to unexpected behavior, where an

intermediate switch may encounter a packet that must go to

the controller for handling. Implicitly assuming that rules are

installed atomically can lead to subtle bugs that only manifest

themselves under certain packet timings and rule-installation

delays. Installing rules from “back to front” (from the end of

the path to the beginning) can prevent this mistake, but the

programmer may not choose to install the rules this way.

Previously-installed rules limit the controller’s visibility:

The controller program is really just one part of a distributed

system that includes the processing performed by the under-

lying switches. Installing a rule (e.g., that forwards or drops

all matching packets) not only dictates what processing a

switch performs, but also what packets the controller sees in

the future! For example, imagine a program implementing a

learning switch. Installing a wildcard rule to forward traffic

based only on the destination MAC address would keep the

controller from seeing some packets sent by new source

MAC addresses—preventing the network from “learning” how

to reach these addresses. While still successfully delivering

traffic, this program would lead to inefficient delivery (e.g.,

via unnecessary flooding) in some corner cases.

Composing functions that affect the same packets:

Networks often perform multiple tasks that affect the han-

dling of the same packets. For example, routing determines

which path carries each packet (e.g., based on destination IP

address), and monitoring determines which packets should be

grouped together for accumulating statistics (e.g., based on

TCP port number). Combining functionality is complicated,

potentially involving the “cross product” of the rules needed

for each function independently. OpenFlow switches rely on

rule priority to disambiguate between overlapping groups of

packets (e.g., to ensure a rule with destination address 1.2.3.4

and port 80 gets precedence over another rule that matches

all traffic to destination 1.2.3.4). Subtle mistakes in setting the

priorities can lead to a program that operates correctly except

for certain packets, or packets arriving in a particular order.



3

Interaction with end-host software: Some controller ap-

plications rely on implicit assumptions about the software

running on the end host (e.g., new TCP connections start with a

SYN packet, or a Web download idle for more than 60 seconds

has completed). These applications may have subtle bugs

that only arise when hosts generate traffic that violates these

assumptions. For example, imagine a server load-balancing

application that directs client traffic to different Web server

replicas (e.g., sending traffic from source IP addresses starting

with 0 to one replica and starting with 1 to another) [5].

Any changes to the load-balancing policy should ensure any

ongoing TCP connection completes on the same server. By

installing a rule that temporarily directs traffic to the controller,

the application could inspect the next packet of each flow to

install a microflow rule directing new flows (i.e., if the packet

is a SYN) to a new server and ongoing flows (i.e., if the next

packet is not a SYN) to the old server. However, the TCP state

machine allows a host to retransmit SYN packets, raising the

possibility of duplicate SYN packets which could lead the

application to wrongly classify an ongoing connection as new.

IV. TESTING OPENFLOW PROGRAMS

The lesson we draw from the example bugs is that controller

programs may cause the network to misbehave when exposed

to corner cases unforeseen by the programmer. Intuitively,

testing the correctness of OpenFlow programs needs to account

for all possible corner cases. As these are clearly not known a

priori, we then want to focus our effort on subjecting the ap-

plication to a variety of carefully chosen inputs (i.e., sequences

of packets and network events). To choose relevant inputs, we

want to identify: (1) what values of packet header fields and

(2) what packet timings, orderings, and other network events

cause the execution of a certain path through the controller

program’s code. Fig. 1 illustrates how we want to proceed:

For (1), we note that the code itself, in its branching

predicates, can reveal the relationships between packet header

fields and code paths (e.g., an if statement checking for a

broadcast MAC address signals different behaviors depending

on whether the check succeeds). Therefore, we use code

analysis to determine “equivalence classes” of packets.

For (2), we must first look at what constitutes system

state. An OpenFlow network should be seen as a distributed

program composed of a controller program and several “switch

programs”. A switch program essentially implements a large

switch-case structure that performs different operations de-

pending on which rule matches the incoming packet. To reason

about the correctness of an OpenFlow program, we need to

observe the state of the entire network. Therefore, we specify

several models of network behavior that cover, with increasing

precision, the possible network events. With these models, we

can strike trade-offs between testing time/effort and fidelity.

Then, the process of testing OpenFlow applications starts

from combining (1) and (2) into a single model that succinctly

describes the space of many possible system executions. In

other words, this model describes what events are possible at

any given state. We use this model to decide what events to

inject into the application, similar to applying model checking

Network

model

OpenFlow

program

Code 

analysis

Equivalence 

classes of 

packets

OF 
switch

OF 
switch

OF 
switch

OF 
switch

1

2

NOX

OF 
program

Correctness properties:
•No loops
•No black holes
•Application-specific

Events:
•Packets
•Failures
•etc.

Fig. 1. Identifying (1) relevant packet header fields and (2) packet sequences
and network events for testing OpenFlow applications.

based on explicit state enumeration. We extensively explore the

space of possible states and test each state against a collection

of universal and application-specific invariants.

A. Huge Space of Inputs: Equivalence Classes of Packets

The space of possible inputs that could be fed to the

application under test is huge. Each individual input is a packet

header from the data plane (e.g., a connection establishment

packet). Consider that there exists 232 different IPv4 addresses,

and 216 different ports, and each packet header has a source

and destination (address, port) pair. Further, it takes more than

one packet to uncover even the faults in our simple examples.

To deal with large input sizes, we use code analysis of

the OpenFlow application to determine equivalence classes of

packets. That is, we identify what (ranges of) values of header

fields determine the path through the application code. Within

each equivalence class, we pick a representative packet to feed

the application to exercise a particular code path.

We analyze the code using symbolic execution, which auto-

matically determines what input values can exercise each path

through the code. To do so, a symbolic execution engine runs

the program with symbolic inputs. The engine tracks the use

of the symbolic inputs and records the constraints involving

the possible input values. When the execution encounters a

branching point, the engine queries a satisfiability solver to

determine which paths are feasible, and logically forks the

execution to follow all feasible paths.

OpenFlow programs are typically structured as event-driven

code where each event is associated with an handler. For

example, Fig. 2 shows the pseudocode for a simple MAC-

learning switch application: it defines a packet handler named

packet_in (line 1). Briefly, this code maintains a per-switch

address table (line 2) that maps a host’s MAC address to its

associated switch port. If the source (line 3) and/or destination

address (line 10) is a broadcast address, it simply floods the

network (line 17). Otherwise, it first checks if the source is

unknown (line 4), in which case it updates the address table

(line 5). When the source is already known, it ensures the

packet came in from the expected port (lines 7-8) or it updates

the registered port (line 9). Then, if the destination is known



4

1 def packet_in(switch_id, inport, pkt):

2 mactable = app_state[switch_id]

3 if not is_broadcast(pkt.src):

4 if not mactable.has_key(pkt.src):

5 mactable[pkt.src] = (inport, time(), pkt)

6 else:

7 e = mactable[pkt.src]

8 if e[0] != inport:

9 mactable[pkt.src] = (inport, time(), pkt)

10 if not is_broadcast(pkt.dst) and ←֓
mactable.has_key(pkt.dst):

11 outport = mactable[pkt.dst][0]

12 if outport != inport:

13 rule = extract_rule(pkt, inport)

14 rule.actions.output = outport

15 install_rule(switch_id, rule)

16 return

17 flood_packet(switch_id, pkt)

Fig. 2. Pseudocode of a simple MAC-learning switch application, loosely
based on the pyswitch NOX application.

and it is not a broadcast address (line 10), it makes a final check

to verify that the destination and source ports are different

(line 12). If this sanity check succeeds, it installs a new rule in

the switch to forward the packet to the destination port (lines

13-15). Instead, when input and output ports are the same, it

simply floods the network (line 17).

To learn classes of packets, we apply symbolic execution to

packet_in event handlers. We expect symbolic execution

to be effective in covering all code paths in these handlers

because, to quickly react to many such events, handlers do

not generally perform complex, compute-intensive operations.

This alleviates the problem that symbolic execution usually

faces: an exponential number of paths in the program size.

However, plugging a packet handler into a symbolic execu-

tion engine is not sufficient for deriving the equivalence classes

of packets. In practice, the application state also plays a role

in determining what code is executed. For example, it is easy

to note that a symbolic execution engine would not be able to

find input values for packet_in that execute the branch at

lines 6-9. This is because, starting from the initial state (i.e., an

empty address table), the branch predicate at line 4 is always

false. Therefore, we note that certain application behaviors

are the result of sequences of packets. Our use of network

models of varying precision explained below is a first step in

addressing this issue. Secondarily, we want to infer from the

code the relationship between consecutive packets. The idea

is to track changes to the application state and relate them

to code paths that depend on state variables having certain

values. With reference to the previous example, we can easily

see that the statement at line 5 changes the application state

and that a consecutive call of packet_in with the same

source address would finally execute the branch at lines 6-9.

We want to automatically identify these state transitions and

use them to determine the initial state needed for expanding

the coverage of symbolic execution.

B. Complex Network Behavior: Progressively Detailed Net-

work Models

Testing typically requires a model of system behavior. While

effective in capturing the behavior expressed by the underlying

code, symbolic execution must be complemented by a model

of the environment. In our case, this model typically includes

a series of possible network-related events such as packet

drops, broken TCP connections, packet reorderings, node or

component failures, etc. [11], [15].

One could argue that this network model, which describes

interactions of packets and events within the network, is

common knowledge. However, we face the challenge that

we are dealing with a distributed system that controls basic

network connectivity—in contrast to previous work on check-

ing distributed systems, which takes network connectivity for

granted. Therefore, it is difficult to know beforehand how to

specify a model that covers relevant sets of packet reorderings,

inter-packet timings, and other network events.

Further, it is not possible to completely specify such a

model because the network behavior is in part determined by

the OpenFlow application, as we discussed earlier. Even if it

were possible to automatically infer the network model, there

exist a form of circular dependency in that the behavior of

the OpenFlow application depends on the network that it is

trying to control. For example, if the underlying network does

not form a spanning tree, a simple OpenFlow application that

floods packets can result in infinite packet loops.

Finally, we want to be able to detect problems due to inter-

operability issues that may arise when the controller program

uses specific implementations of OpenFlow. Therefore, we

cannot simply focus on checking the correctness of a controller

program in isolation from the switches.

We take a four-prong approach for building progressively

more detailed network models:

1) We start with a simple model based on the commonly

available knowledge. This model accounts for events

such as reordered packets, dropped packets, switch fail-

ures, link failures, topology changes, and user mobility.

2) We want to automatically augment the network model by

examining the OpenFlow application code. To illustrate,

consider the case of the TCP state machine. If we can

automatically process the state machine specification, we

automatically realize the need to subject the application

to repeated SYN packets and other corner cases.

3) We want to re-create the target network topology in

our testing environment by using virtual instances of

actual OpenFlow switch implementations (e.g., Open

vSwitch [16]). That is, rather than modeling switch

behavior at a high level, we wish to base our model

on the code that runs an OpenFlow switch.

4) To account for the unpredictability of the target network

and its behavior, we want to integrate our approach

with the network itself to enable testing the OpenFlow

application on the target network, but in isolation from

production traffic (similar to [13]).

These approaches are illustrated in Fig. 3 as concentric

circles where the captured network behavior monotonically

increases from approach one to four. This benefit of higher

precision, however, comes at the increase in complexity.

For example, the first approach already enables developers

to test their code under different packet-arrival patterns just

by using their workstation. The second approach introduces

relevant sequences of packets based on the analysis of the



5

1) Simple network 
model: reordered, 

dropped packets, 

etc.

Fig. 3. Overview of our approach to building a network model that covers
progressively more network behaviors.

OpenFlow program code. The third step allows the behavior of

the system comprising the controller program and the network

of OpenFlow switches to be checked (still in a local setting).

Finally, the fourth step allows the programmer to gain more

confidence that the target network performs as expected by

testing on the network itself.

For testing, we use the network model to decide what events

can happen at any given state and to subject the OpenFlow

network to these events in a systematic way. Effectively, we

inject the application with a number of relevant inputs that

explore a variety of expected behaviors, as well as difficult-

to-produce corner cases.

C. Specifying Correctness is Hard: Testing Invariants

We have discussed how different application behavior can

be triggered by carefully crafted and timed inputs. However,

the question remains of knowing what constitutes a fault.

We will uncover software faults by detecting violations of

desired behavior, e.g., incorrect behavior. We are not interested

in finding straightforward memory safety violations, memory

leaks, etc., as we believe that the existing tools are sufficient

for this task.

Specifying correct behavior is a challenging problem even

for single machine applications. Simply put, most software is

written without considering the safety and liveness properties

typically used to describe desired behavior. In our case, the

addition of the distributed collection of switches presents

additional challenges, as it further complicates reasoning about

correctness.

Our approach to dealing with correctness is to: (i) incor-

porate properties that are widely applicable to all networking

applications (e.g., the forwarding rules should not induce loops

or black holes), and (ii) provide an API that the developer can

use to specify additional safety invariants or liveness properties

(e.g., all packets of the same microflow go to the same Web

server). As we inject inputs to the system, we test these

invariants after each system transition.

However, programmers often have difficulty stating mean-

ingful invariants for their code. OpenFlow programming raises

an alternative way to define correctness: the programmer

could write a simpler controller application where all packets

are handled by the controller, with no rules installed in the

underlying switches. These programs, while clearly inefficient,

are much easier to write because they side-step the challenges

of distributed state and race conditions that arise in delegating

work to the switches. In fact, writing the simple centralized

program is a natural first step toward writing a more complex

version that offloads packet-handling work to the switches.

By injecting the same inputs to both programs, we can check

whether the two programs treat all traffic the same way.

V. PRELIMINARY PROTOTYPE

We developed a symbolic execution engine capable of

running NOX applications implemented in Python. Within

it, the application is executed in a controlled environment

that provides a subset of the NOX API and is fed with

symbolic packets. The application execution is then traced

through the Python interpreter and this process is re-iterated

until all constraints have been recorded and negated, by using

a constraint solver, to explore all possible execution paths.

Python specifics. A key step in symbolic execution is

tracking the constraints during code execution. A notable

difference from symbolic execution of C code [13] is that

we had the option of changing the data types to be sym-

bolic, instead of having to instrument C code. For exam-

ple, we implemented a “symbolic integer” type to be able

to follow a symbolic variable through the program execu-

tion. This way the engine knows immediately whenever a

change/assignment/comparison to a symbolic variable is made.

We also implemented arrays of these symbolic integers.

OpenFlow specifics. The basic unit of symbolic input is a

packet, and the engine feeds a symbolic packet at a time to

the application and records all constraints that are applied

to it. Our symbolic integer is the base for a real packet

symbolic type that is substituted to the packet type provided by

NOX. For example, we currently mark two MAC addresses as

symbolic six-byte arrays, as well as a symbolic type to inject

the symbolic packet into the pyswitchMAC-learning switch

application.

VI. RELATED WORK

The CMC [17] model checker was successfully used to

check network protocol implementations (e.g., the Linux im-

plementation of TCP/IP and the AODV ad-hoc routing pro-

tocol). The MaceMC distributed systems model checker [11]

can detect liveness property violations in distributed systems

code, while CrystalBall [12] can guard against safety property

violations due to unknown bugs. All of these require manual

creation of the network model used to trigger state changes.

Symbolic execution has proven useful in automatically

creating test cases that attempt to exhaustively exercise all

code paths in a given piece of code [18]. Recently, Canini

et al. [13] have shown that it is possible to use symbolic

execution in the live setting to detect BGP misconfiguration.

However, both Klee [18] and DiCE [13] use small inputs to

overcome the path explosion problem that arises when large

inputs (as those needed for testing of OpenFlow applications)

are used. Moreover, symbolic execution requires manual effort



6

to create branches in the code that the path exploration

engine can subsequently negate and trigger desired changes

in the network. For example, this is the approach taken in

KleeNet [15].

FlowChecker [19] can detect misconfiguration in one or

more OpenFlow forwarding tables. The main motivation for

this work arises in federated environments, potentially with

different OpenFlow controllers. FlowChecker builds upon the

existing ConfigChecker [20] tool, which requires manual con-

struction of a network model using binary decision diagrams.

This model is then checked using symbolic model checking

techniques for reachability and security. We view this work

as orthogonal to ours since it aims to check the OpenFlow

application behavior at runtime.

Frenetic [21] is a domain-specific language for OpenFlow

networks that introduces an abstraction that the OpenFlow

program examines every packet. By doing so, Frenetic aims

to eradicate a large class of programming faults that arise due

to a programmer’s confusion in handling individual packets

vs. installing wildcard rules on the switches (i.e., reactive

vs. proactive OpenFlow programming model). Using Frenetic

requires the network programmer to learn another language.

That said, the research on Frenetic inspired several of our ex-

ample bugs in Section III, and the idea of defining correctness

through a simple controller program that “sees every packet.”

OFRewind [22] is a system that enables recording and

replay of network events with the aim of facilitating trou-

bleshooting problems in production networks due to closed-

source components such as commercial routers and switches.

While OFRewind could be used to investigate misconfigura-

tion in OpenFlow networks, it does not automate the testing

of OpenFlow controller programs.

VII. CONCLUSION AND FUTURE WORK

In this paper, we argued for automating the testing of Open-

Flow applications. As the network programmability enhances,

risks arise that even a single bug in the centralized controller

can disrupt the entire network. Through a series of examples,

we showed several pitfalls where small differences in packet

headers or timing can result in unanticipated corner cases.

We identified the huge space of inputs, the complexity of

the distributed system, and the dependency of correctness on

external events as some of the challenges in testing OpenFlow

programs. Our goal is to automate the testing by subjecting

the application to a variety of carefully chosen sequences

of packets and network events. To do so, we propose to

dynamically analyze controller programs to identify equiva-

lence classes of packet headers and to use several network

models with increasing coverage and precision, ranging from

simple traffic models to live testing on the target network.

Initial experiences with our prototype, which symbolically

executes NOX applications written in Python, suggest that

our techniques can help programmers identify bugs in their

OpenFlow programs.

Our work is on-going. We plan to complete the imple-

mentation of the symbolic execution engine for Python to

include support for more data types and to automatically

detect relevant initial states. Further, we will build the network

models, analyze their coverage, and find techniques grounded

on formal methods that can help to cope with the large space

of system executions.

Acknowledgments.: The research leading to these results

has received funding from the European Research Council

under the European Union’s Seventh Framework Programme

(FP7/2007-2013) / ERC grant agreement 259110.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
pp. 69–74, March 2008.

[2] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Gude, N. McKeown,
and S. Shenker, “Rethinking enterprise network control,” IEEE/ACM

Transactions on Networking, vol. 17, Aug. 2009.
[3] A. Nayak, A. Reimers, N. Feamster, and R. Clark, “Resonance: Dy-

namic Access Control for Enterprise Networks,” in ACM Workshop on

Research on Enterprise Networks (WREN), Aug. 2009.
[4] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Johari,

“Plug-n-Serve: Load-balancing web traffic using OpenFlow,” Aug. 2009.
Demo at ACM SIGCOMM.

[5] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-Based Server Load
Balancing Gone Wild,” in Workshop on Hot Topics in Management of

Internet, Cloud, and Enterprise Networks and Services (Hot-ICE), Mar.
2011.

[6] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “ElasticTree: Saving energy in data cen-
ter networks,” in Proc. Networked Systems Design and Implementation,
Apr. 2010.

[7] D. Erickson et al., “A demonstration of virtual machine mobility in an
OpenFlow network,” Aug. 2008. Demo at ACM SIGCOMM.

[8] “Research experiment disrupts Internet, for some,” http:
//www.computerworld.com/s/article/9182558/Research experiment
disrupts Internet for some.

[9] “AfNOG Takes Byte Out of Internet,” http://www.renesys.com/blog/
2009/05/byte-me.shtml.

[10] “Reckless Driving on the Internet,” http://www.renesys.com/blog/2009/
02/the-flap-heard-around-the-worl.shtml.

[11] C. E. Killian, J. W. Anderson, R. Jhala, and A. Vahdat, “Life, Death,
and the Critical Transition: Finding Liveness Bugs in Systems Code,”
in NSDI, 2007.

[12] M. Yabandeh, N. Knežević, D. Kostić, and V. Kuncak, “CrystalBall:
Predicting and Preventing Inconsistencies in Deployed Distributed Sys-
tems,” in NSDI, 2009.

[13] M. Canini, V. Jovanović, D. Venzano, B. Spasojević, O. Crameri, and
D. Kostić, “Toward Online Testing of Federated and Heterogeneous
Distributed Systems,” in USENIX Annual Technical Conference, 2011.

[14] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “NOX: Towards an Operating System for Networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, pp. 105–110, July 2008.

[15] R. Sasnauskas, O. Landsiedel, M. H. Alizai, C. Weise, S. Kowalewski,
and K. Wehrle, “KleeNet: Discovering Insidious Interaction Bugs in
Wireless Sensor Networks Before Deployment,” in IPSN, 2010.

[16] “Open vswitch: An open virtual switch.” http://openvswitch.org.
[17] M. Musuvathi and D. R. Engler, “Model Checking Large Network

Protocol Implementations,” in NSDI, 2004.
[18] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex Systems
Programs,” in OSDI, 2008.

[19] E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration Analysis and
Verification of Federated OpenFlow Infrastructures,” in SafeConfig,
2010.

[20] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. ElBadawi, “Network
configuration in a box: Towards end-to-end verification of network
reachability and security,” in ICNP, 2009.

[21] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A Network Programming Language,”
in ACM International Conference on Functional Programming, Sept.
2011.

[22] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann, “OFRewind:
Enabling Record and Replay Troubleshooting for Networks,” in USENIX
Annual Technical Conference, 2011.


